New Breakthroughs in Space Weather Prediction at Michigan

A simulated (left) vs. observed (right) CME as seen from near-Earth.  CLaSP's EEGL model is successfully reproducing key features of observations.
A simulated (left) vs. observed (right) CME as seen from near-Earth. CLaSP’s EEGL model is successfully reproducing key features of observations.

One of the ongoing research projects here at the University of Michigan’s Climate and Space department is computer simulations of eruptive events from the solar atmosphere into the solar system.  “Eruptive events” are explosions of material (mostly super-hot hydrogen gas) and magnetic fields into space.  The atmosphere of the sun is locked in a delicate balance between gravity, which holds the atmosphere down, and the expansive force of the super-hot atmosphere, which pushes it away.  On top of this are complicated magnetic and electric forces.  When the balance breaks down, you get an explosion of material into space.  These are known as “coronal mass ejections”, or CMEs.  Simulating these events is incredibly difficult because the physics behind CMEs is only tenuously understood.

Here at CLaSP, scientists have had a breakthrough with their new EEGGL model- the Eruptive Event Generator: Gibson-Lowe model.  This model has had great success in reproducing solar storm observations, which is the first step towards prediction of these storms before they arrive at Earth.  NASA has recently highlighted this new science, so be sure to give that article a read.